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Abstract

We construct the orthonormal bases of the Cosserat subspace i ™" corresponding to the eigenvalue of infinite
multiplicity @ = —1 for the first boundary value problems of elasticity for a solid cylinder and a cylindrical rigid
inclusion. These bases involve the Jacobi polynomials with different weight functions. An example of non-harmonic
heat flow past a cylindrical rigid inclusion shows that the sequence of &~V converges fast, thus, the Cosserat
spectrum theory is an efficient method for solving elasticity problems of general body force or boundary
loading. © 1999 Elsevier Science Ltd. All rights reserved.

1. Cosserat subspace i~" in cylindrical coordinate system

The Cosserat eigenvectors are composed of the discrete subspace of eigenvectors #,, the subspace of
eigenvectors ﬁ;‘l) corresponding to the eigenvalue of infinite multiplicity @ = —1 and the subspace of
eigenvectors #* corresponding to the eigenvalue of infinite multiplicity @ = —oo (Mikhlin, 1973). In
Part 1, we obtained the discrete Cosserat eigenvalues @, and eigenvectors #, for cylindrical bodies.
Part 2 is devoted to the construction of the orthogonal bases of the Cosserat eigenvectors @ ,(1_1) for the
first boundary value problems for a solid cylinder (inner problem) and a cylindrical rigid inclusion
(outer problem).

The differential equation describing @ {" of the first boundary value problem in a 3-D domain V is
given by (e.g. Markenscoff and Paukshto, 1998)

Vxa=0 inV (1a)
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iV =0 on vV (1b)
n -

where 9V is the surface of V.
We will now restrict attention to 2-D domains and use the cylindrical coordinate system (r, 0). @'
now takes the following form

i@\, 0) = un(r, 0)e, + (r, O)eg @)
By substituting Eq. (2) into Eq. (1), we obtain a general solution of & L’l) as follows

unr(r, 0) = fu(r, 0) (32)

3fu(z, 0)

. 0) = |

where f,(r, 0) is an arbitrary function vanishing on 9Q. To separate the variables r and 0, let

f;1(ra 9) = Rn(r)Qn(g) (4)
where R,(r) and Q,(0) are functions to be determined. Equation (3) is now written as
unr(ra 9) = Rn(r)Qn(B) (Sa)
1 dQ,(0)
war.0) = 1 | Ry(e) a2 (5b)
from Eq. (5) the divergence of @ fjl) assumes
R, dR 1 d’0
i ~(—1) — fn n o n
V@, 0) <r+m)®+ﬂhmm%y ©)

To let the Cosserat eigenvectors ﬁ;’l) be orthogonal and complete in 0, Q,(0) naturally must be of the
form of cos n6 and sin n0. The solutions of the Cosserat eigenvector @ fq_l) Eq. (5) and its divergence Eq.
(6) are now taking the form

unr(r, 0) = Rn(r){ z:)nS:GH } (73)
un(r, 0) = ! Ry(t)dt i sin 0 (7b)
noAT N n cos no
R dR n? cos no
iy — | n_ "
V-, (r0)= |: . + O " JR,Z(‘L') driH sin 0 } (8)

where n=20,1,2,....

2. A solid cylinder (inner problem)

In general, eigenvectors corresponding to the same eigenvalue can be made orthogonal. We now
discuss the orthogonalization process of the Cosserat eigenvector ﬁ;’l).
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Because of the orthogonality property of {g)ns;g
the first boundary value problem will be automatically satisfied if we choose different values for the
parameter n in Eq. (8). However, in case of the same value of n, by properly choosing the function
R,(r), we can also retain the orthogonality condition for the Cosserat eigenvector ﬁ;’l), a new subscript
index p is introduced to distinguish the difference in R, (r).

For a solid cylinder r<ry, where rj is the radius of the cylinder, the Cosserat eigenvector @ ,(1_1) and its
divergence, together with the boundary condition, are now written in a more general form

, the orthogonality condition (Mikhlin, 1973) for

ﬁ;;l)(l’, 9) = unpr(r» G)er + unp()(r, Q)e(; (98.)

0
Unpr(r, 0) = Rnp("){ Z‘I)ns :9 } (%b)
1( —n sin n0
o 0= [ Ry ae] 50 %)
Rnp(ro) =0 (9d)
~(— . cos nf

v-a@(r, 0) = C”pf”p(r){ o } (10a)
R, dR, n’ [
71’ + d"’ - 7] Rp(t) dt = Cppfyp(1) (10b)

7 i P

where the constant C,, and function f,,(r) will be determined by the orthogonality condition for the first
boundary value problem and n =0, 1, 2,.. ..

Firstly, we need to make ﬁ&l;” orthogonal to the discrete eigenvector #,. By introducing a potential
function

”

Bup) = gl = | Rop(e) (an
Eq. (10b) becomes

Eho)  1dhy ()
dr? rodr 2

[¢n1,(i') - ¢;1p(r0)] = Cnp ,1,,(]‘) (123)
with the boundary conditions

dd)np
dr

= 0 = 1‘0 (12b)

By using the Green’s function method, the solution to Eq. (12) for n > 0 is given by
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Cop o [
Gup(r) = Dup(ro) = =5 =" J (rg e o) fop(x) de

Cup/ _ [
_ 2: (rg?r" +17") Jo " fa(t)dt n>0 (13)

Directly integrating Eq. (10b) for n = 0 and differentiating Eq. (13) give R,,(r) as follows

Rop(r) = % Jo Tfop(7) dt (14a)

C o
Rnp(r) — _%rnfl J (ra2n,[n+l + Tﬁrﬁl)fnp(f) dr

r

| (14b)
CI _2n . n— —(r
= St =) | e de 0
Applying the condition at r = ro on Eqs. (13) and (14a) shows that f,,(r) should satisfy
)
J V'7+1fnp(r)dr=0 n:(),l,z,..- (15)
0

Equation (15) also serves the orthogonality condition between the Cosserat eigenvectors @ 5;;1) and @,
forn>=1.

Secondly, we need to make @ 51;1) orthonormal inside the subspace @~ by (Mikhlin, 1973)

J Vi V(e 0V -l (e, 0) dA = 8,y (16)
A

np

where d4 = rdr dol, r € [0, ro], 0 € [0, 27, is the area element in the cylindrical coordinate system (r, 0).
To construct the orthogonal basis for @ ,(1;1), we introduce a new variable

o

In the coordinate system (s, 0), we rewrite the Cosserat eigenvector @ 51;1) Eq. (9) and its divergence Eq.
(10) as follows

i, (s, 0) = tpe(s, 0)e, + tnpo(s, O)eg (18a)
cos nt

tnpe(5. 0) = Rip($)] (18b)

wno(s. 0) = L[ Ry (1) ar] —7 5010 (18¢)

npO>> sho n cos no

C ) S '
Rop(s) = °;’°J o) (18d)

=
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1 S
C
np(s) n;ro n—1 Jt_'(tn-H + t_’1+1)f;1p(f) df — n2pr0 (sn—l _ S—(n+1)) Jt_o tn+lf;1p([) dt n>0 (186)
(1) _ cos n0
Vi, (s, 0) = Cnﬂfnp(s){ sin 10 } (19a)
R, dR, n*[' ,
S + T — ? Jl Rnp(l) dt = Cnpr()fnp(s) (19b)
The existence condition Eq. (15) for ufwl) now takes the form
1
STp(s)ds =0 n=0,1,2,... (20)
The orthonormality condition Eq. (16) becomes
@V (s, 0OV a1 (s, 0) dA = 6,8y 1)
A

where d4 = r3sds df, s € [0, 1], 0 € [0, 2x], is the area element in the cylindrical coordinate system (s, 0).
Substituting Eq. (19a) into Eq. (21) with n = m, we have

1
TCV% Cnp qu J‘O‘f”p(s)f”q(s)s ds = (S[,q (22)
Rewrite Eq. (20) and Eq. (22) in the form

1
J 1- -f;1}7’(13)s2n+1 ds=0 n= O, 1, 2, . (23)
0 A

lﬁp(s)ﬁiqv}gs)sm ds= s, (24)

2
71y Crp Cm]J .
0 Y

Equation (24) shows that the functions f,,(s)/s" have to be chosen as some orthogonal functions with
weight w(s) = s*"*!. Equation (23) implies that these functions have to start with the term f;0(s)/s" = 1
and this term should be excluded in the subspace for u( . The Jacobi polynomials with different weight
functions satisfy these requirements.

As examples, we now construct the first two orthogonal bases ufwl) with n =0,1. The other
orthogonal bases for n > 1 can be constructed in a similar way.

2.1. The zeroth orthogonal basis ug D

We start construction of the orthogonal basis with n = 0. The divergence of the Cosserat eigenvector

ﬁg;l) is given by

Vi) = Confog(s) 23
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The orthonormality condition Eqs. (23) and (24) take the form

1
J 1 fop(s)sds =0 p=1,2,3... (26)
0

1
mﬂéCO,,Coq J Jo,()o,()sds =3y, p,g=1,2,3,... (27)
0
Equation (27) suggests that we choose

Jop(s)=J(p,1,5) p=1,2,3,... (28)

where J(p, 1, s) is the Jacobi polynomial of degree p with weight w(s) = s. The Jacobi polynomial
J(p, m, s) of degree p with weight w(s) = s and its norm A(p, m) are given by (Abramowitz and Stegun,
1972)

1

L Jp: m, 5)J(q, m, 5)s" ds = h(p, m)dy (292)
IF'p+m+1) P\TQp+m+1-1)

. m. 5) = F(2p+m+l)z(_l)<l)F(p—i—m—i—l—l)sp (29b)

e+ DPp+m+1)

h(p, 29c¢
P = T mt D22t m+ 1) (29¢)
where I'(p) is the Gamma function and (’; ) = #11)' is the binomial coefficient.
We now have the Cosserat eigenvector @ g; D and its divergence as follows

ﬁg;l) = ug,,er + Uo,,€0 (30a)

uopr = Rop(s) (30b)

uopg =0 (30c)
Copro [*

Rop(s) = W”OJ tJ(p, 1, 1) dt (30d)

1=0

Vi = Codip, 1, 9) (31a)

(O i p— ! (31b)
% wdh(p, 1)

where p=1,2,3,...
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2.2. The first orthogonal basis ﬁ(lp

When n = 1, the divergence of the Cosserat eigenvector ﬁg;l) is given by

cos@}

V.- 12(1;1) = Clpflp(s){ sin 0

The orthonormality conditions Egs. (23) and (24) take the form

1
J 1-@s3ds=o p=1273,...
0

1
nr%ClpCIqJ Mwﬁds =0, P.q=12,3,...
0 N N
Equation (34) suggests that we choose
M:J(p, 3,5) p=1,2,3,...
s

where J(p, 3, s) is the Jacobian polynomial of degree p with weight w(s) = s°.
We now have the Cosserat eigenvector @ (1;1) and its divergence as follows

~(—1)

Uy, =uper + uy,e0
cos 0
Ulpr = Rlp(s){ sin 0 }
I —sin 0
Ulpg = E Jl Rlp(t) dl{ cos 0 }
C 1 C s
Ryp(s) = _17"’0] (A +10)J(p, 3, 1)dt — l5“(1 - S_Z)J £, 3, 1) dt
t=s =0

_(—1) _ cos 0
Veay, = Cyslp, 3, S){ sin 0 }

2 1

" wdh(p, 3)

where p=1,2,3,....

3. Cylindrical rigid inclusion (outer problem)

1183

(32)

(33)

(34)

35)

(36a)

(36b)

(36¢)

(36d)

(37a)

(37b)

For a cylindrical rigid inclusion r > ry, where ry is the radius of the inclusion, & " and its divergence

are derived in a similar manner and given as follows
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iV, 0) =ty (1, 0)e, + thy (7, O)eg (382)
cos nf
unpr(ra 9) = Rnp(r) sin 16 (38b)
( 9)_1 rR dgp] 7 sinnd (380)
UnpolT> 0 = " w(7) dt n cos nf ¢
Rnp(ro) =0, Ryp(00) = 0 (38d)
2Dy . cos nf
\Y Uy (r, 0) = Cnpfnp(r){ sin 70 } (39a)
Ry, dR, n*[
R S = | Rp(e) e = Confy) (39b)
r dr = )n

where the constant C,, and function f,,(r) will be determined by the orthogonality condition for the first
boundary value problem and n =0, 1, 2,....

To construct the orthogonal basis @ 51;1), first, we need to make #@ ,(1;') orthogonal to the discrete
eigenvector & ,. By introducing a potential function

”

Bupl1) — Dun(r0) =J Ryp(z) de (40)

ro

Equation (39b) becomes

d*¢, 1d¢, 2
(zr];(r) + ; qsd];,(r) - ’:—2[(]5,1,,(1‘) - qb”p(l’o)] = Cnp np(r) (41a)

with the boundary conditions

d
—Zsr"p =0 r=ry and r=o00 (41b)

By using the Green’s function method, the solution to Eq. (41) for n > 0 is given by

Cn —n ' n n._.—n g
¢np(r) - d)np(ro) = _2—;" J (T + + V% T +l)fnp(r) dT

ro

Cy o0
— an (" + ré”r_”)J () dt n> 0 (42)

Directly integrating Eq. (39b) for n = 0 and differentiating Eq. (42) gives R,,(r) as follows

RO]J(") = % J 1;/{017(‘5) dr (43a)

r o
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C r
Rnp(r) — #r*(nJrl)J (_En+1 + r%nrfnJrl)ﬁw(T) dr

ro

Cn p
2

o0
(r”_l — 1‘(2)”;’_(”“)) J () dt n>0 (43b)
From Eq. (42), we see that the solution ¢,,(r) exists if and only if
o0
J () dr=0 n=1,2,... (44)
o

Equation (44) also serves the orthogonality condition between ﬁﬁ;” and @, for n > 2. Note that there
are no discrete Cosserat eigenvectors corresponding to n =0 and n = 1.
Secondly, we need to make @ fl;l) orthonormal inside the subspace @ 57;1) by (Mikhlin, 1973)

L Vil D, 0V -al(r, 0) dA = 8,mdy (45)

mq

where d4 = r dr df, r € [ry, o0], 0 € [0, 2x].
To construct the orthogonal basis for & 57;1), we introduce a new variable

s=22 (46)

r

In the coordinate system (s, 0), we rewrite the Cosserat eigenvector @ 51;1) Eq. (38) and its divergence
Eq. (39) as follows

i1 (s, 0) = wypr(s, 0)e, + tnpo(s, 0)eg (472)
cos nf
unpr(sa 6) = Rnp(s) sin 10 (47b)
s dt [ —n sin n0
Unpo(s, 0) = —s L Rnp(l)tz{ 1 cos nl } 47¢)

S

Ry,(s) = _COpVOSJ l‘isf()p(l‘) dt

=1

S

C s 1 G
Ryy(s) = —%ros”“ J (t”+3 + l”_3)f,,p(t) dr — %}[O(s_”“ — s”+1)J t”_3f,,p(t) dt n>0 (47d)

=1 =0

(- cos n
V. uglpl)(s, 0) = Cyp np(s){ sin 10 } (48a)
s’[R,, dRy,, 5 [° dt
- - R,y(1)— | = Cupf 438b
B Sr | Ry0% ] = Gt (sh)
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The orthogonal conditions Egs. (44) and (45) becomes

1
RGN S w
n
0 s
1
15 CopCog JO @@Sk% ds = d), 0

When n>=2, Eq. (50) shows that the functions f,,(s)/s” have to be chosen as some orthogonal
functions with weight w(s) = s*"~3. Equation (49) implies that these functions have to start with
fno(s)/s" =1 and this term should be excluded in the subspace for ftfl;l). The Jacobi polynomials with
different weight functions satisfy these requirements.

In the following sections, we will construct the first three orthogonal bases & ,(1;” with n =0, 1, 2. The
other orthogonal bases for n > 2 can be constructed in a similar manner.

(=1)

3.1. The zeroth orthogonal basis i,

We start construction of the orthogonal basis with n = 0. The orthonormality condition Eq. (50) takes
the form

! $) foo(s
T”%COpCOlI Jo fo];g )Jos(5)

2 sds=0d,, p,g=0,1,2,... (51)

Equation (51) suggests that we choose

@:J@,l,ﬂ p=0,1,2,... 2

where J(p, 1, s) is the Jacobi polynomial of degree p with weight w(s) = s.
We now have the Cosserat eigenvector @ B;l) and its divergence as follows

~(-1)

W, = Uoprer + Uopoey (53a)
uopr = Rop(s) (53b)
ugpo =0 (53¢)
Rop(s) = —Coprios J 1 dr (53d)
-
Vg = CopsI(p, 1. 5) (54a)
) 1

= 54b
% wdh(p, 1) (54b)

where p=0,1, 2,....
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3.2. The first orthogonal basis i lpl)

When n = 1, the orthonormality conditions Eq. (5) take the form

1
$)f1,(5)
nréclpclq Jo fl[;g )—sz s ds

=06y prq=0,1,2,...

Equation (55) suggests that we choose

flp(s)

=Jp.1,5) p=0,1,2,.

where J(p, 1, s) is the Jacobi polynomial of degree p with weight w(s) = s.
We now have the Cosserat eigenvector @ (1;1) and its divergence as follows

(=1)

iy, = uprer + upoeq
cos 0
Uiy = Rip(s)] .
1pr 117( ){ sin 6 }

4 dt| —sin 0
Ulp) = _SJ1 Rlp(t)lz{ cos 6 }

(2 +1)J@p, 1, 1) dit — %Clpro(l - SZ)J Jp, 1, 1) dt

1
Rlp(s) = —EClproszj
t=0

t=1

i 0
Vi = s 1, ){COS }

sin 0

) 1

G =
= m2h(p, 1)
where p=0,1,2,....

3.3. The second orthogonal basis ug D

When n = 2, the orthonormality conditions Egs. (49) and (50) take the form

Sap(s)
L Plsds=0 p=1,2.3,.

fZT;(S)foI(S) ds=10p, p.q=12,3,.

2
Y 0C2PC2q J
0 S

Equation (60) suggests that we choose

1187

(55)

(56)

(57a)

(57b)

(57¢)

(57d)

(58a)

(58b)

(59)

(60)
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4@:.]@’1’5') p:l,2,3,... (61)

where J(p, 1, s) is the Jacobi polynomial of degree p with weight w(s) = s.
We now have the Cosserat eigenvector @ (2;1) and its divergence as follows

a(z—l)

p Uzprér + Uzpe€o (623)

cos 20
Upr = R2[1(S){ sin 20 } (62b)
s dr [ —2sin 20
Uppg = —S§ Jl Rzp(l)t—z{ 2 cos 20 } (620)
1 s 1 s
Rop(s) = —Eczproy* JI_I(r‘ +1)J(p, 1, 1) dt — Eczpro(s-1 —5) J,_o tJ(p, 1, 1) dt (62d)
~(— cos 20
V. ugp” = Cys*J(p, 1, s){ <in 20 } (63a)
e (63b)
> wrZh(p, 1)

where p=1,2,3,....

4. Application to thermoelasticity and viscoelasticity

To illustrate the application of the Cosserat eigenvectors &', we present an example of a heat
source in an infinite medium containing a cylindrical rigid inclusion. The thermoelastic problem is
described by

Au+owVV-u=Q0Bw —1)aVT r=r (64a)

u=0 r=rg (64b)

where w = (A + u)/u, A and p are the Lamé constants, ry the radius of the inclusion, « the thermal
expansion coefficient. Suppose that a non-harmonic temperature field generated by a heat source is

4-p
T= To<—> r=ry (65)

where 7\ and f are constants, 0<f<1.

In thermoelasticity, only the discrete Cosserat eigenvectors @&, make a contribution to the
displacement caused by a harmonic temperature field, while both &, and 112;” make a contribution to
the displacement caused by a heat source (non-harmonic temperature). The representation theorem for a
heat source takes the form (Liu et al., 1998)
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u= Q3w - 1){26)&’_” (1LY i), + ZZH%(T, V. ,szw)afwl)} (66)
nop

n

The displacement caused by the axisymmetric temperature field Eq. (65) has a simple form u = u,e,,

which corresponds to the Cosserat eigenvectors with n =0. There are no discrete eigenvectors
. . ~(—1) . . . )

corresponding to n =0 and only &, make a contribution to the displacement field. Consequently, the

representation theorem Eq. (66) reduces to

Bw — Do ~—1)\~(—1)
:‘511§%ZV%FVW (67)
p=

Substituting Eqs. (53) and (54) into Eq. (67), we have the non-dimensionalized displacement

1

__ ulo+) g -1
"= o — Dan Ty Zh@nU 71 dS} H:J M1 o

For comparison, we solve Eq. (64) subjected to the temperature field Eq. (65) by classical means and
obtain the non-dimensionalized displacement component in closed form

w1\
= G — DaroTo - 2|:<7) _(7):| ~

The numerical calculations for the approximate solution given by the summation of the first N terms
of Eq. (68) and the exact solution given by Eq. (69) are shown in Tables 1 and 2. We see that the
summation of the series of ﬁg;l) converges very fast to the exact solution. This confirms that the
Cosserat spectrum theory is an efficient method for solving problems of general body force and
boundary loading. In general, only the first few eigenfunctions are required for a certain geometry and
they may be obtained analytically or numerically.

The thermoelastic solution can also be extended to thermoviscoelasticity (Markenscoff et al., 1998). If
a material is viscoelastic and the temperature field Eq. (65) is time dependent, the thermoviscoelastic
solution in the form of Laplace transform is essentially the same as its thermoelastic counterpart,

Table 1
Numerical result for the displacement i, (ro/r = 0.5)

N f = 0.001 £ =0.01 B =0.1 B =05
0 0.173330 0.173721 0.177730 0.198042
1 0.196070 0.196451 0.200340 0.219700
2 0.187550 0.187988 0.192580 0.215270
3 0.187550 0.188004 0.192636 0.215441
4 0.187550 0.188006 0.192649 0.215495
5 0.187550 0.188005 0.192647 0.215485
6 0.187550 0.188005 0.192646 0.215480
7 0.187550 0.188005 0.192646 0.215482
8 0.187550 0.188005 0.192647 0.215483
9 0.187550 0.188005 0.192646 0.215482
10 0.187550 0.188005 0.192646 0.215482

Exact solution 0.187550 0.188005 0.192646 0.215482




1190 W. Liu, X. Markenscoff | International Journal of Solids and Structures 37 (2000) 1177-1190

Table 2
Numerical result for the displacement i, (ro/r = 0.2)

N B = 0.001 B =0.01 B=0.1 =05
0 0.160984 0.161347 0.165071 0.183936
1 0.095477 0.095870 0.099938 0.121545
2 0.096043 0.096432 0.100453 0.121839
3 0.096042 0.096419 0.100335 0.121482
4 0.096042 0.096417 0.100317 0.121405
5 0.096042 0.096417 0.100316 0.121399
6 0.096042 0.096417 0.100317 0.121404
7 0.096042 0.096417 0.100317 0.121408
8 0.096042 0.096417 0.100317 0.121408
Exact solution 0.096042 0.096417 0.100317 0.121408
namely,
~ (3(1) — 1)0( NN ~(—1)\Y~(=1)
i = pZO(T,V-qu )uop (70)

where @ = (i + /L, J and {t are complex Lamé constants, T and d@ are the Laplace transform of T
and u, respectively. Note that the Cosserat eigenvectors @ g;') depend only on the geometry. The inverse
Laplace transform will give the displacement field in convolution form for the thermoviscoelastic
problem as follows

1

o0 1 1
u(t) = rOZ J s3*ﬂJ(p, 1, s)ds SJ
p=0 s=0

o W, 1, 0) de JO To(t)G V(= 1) dr’ (71a)

1=s
where G “1(¢) is the inverse Laplace transform of the moduli given by

Bo — l)oz:|

(-1) |
G Vo=L [ . (71b)
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